Quels leviers de gestion des sols pour maîtriser la ressource en eau?

Couverts végétaux et Amendements

Violette AURELLE Mathilde JARDEL

Chambre d'agriculture de la Gironde Equipe Sol

Changement climatique et impacts sur la vigne

- Augmentation des températures (+1,4°C depuis un siècle)
- Variabilité du climat et des évènements extrêmes :
 - Vagues de chaleur
 - Pluies intenses, par périodes
 - Accidents climatiques (gel, grêle, ...)
- L'un des impacts = contrainte hydrique accrue
- Changements observables sur la vigne :

Cycle phénologique avancé

Maturation en conditions plus chaudes

Date de vendange avancée

Composition des baies

Sols au cœur des leviers d'adaptation et d'atténuation du CC

SOL

A : contient 1 milliard de bactéries dans 1g

B: demande 200 à 1 000 ans pour former 1 cm de plus

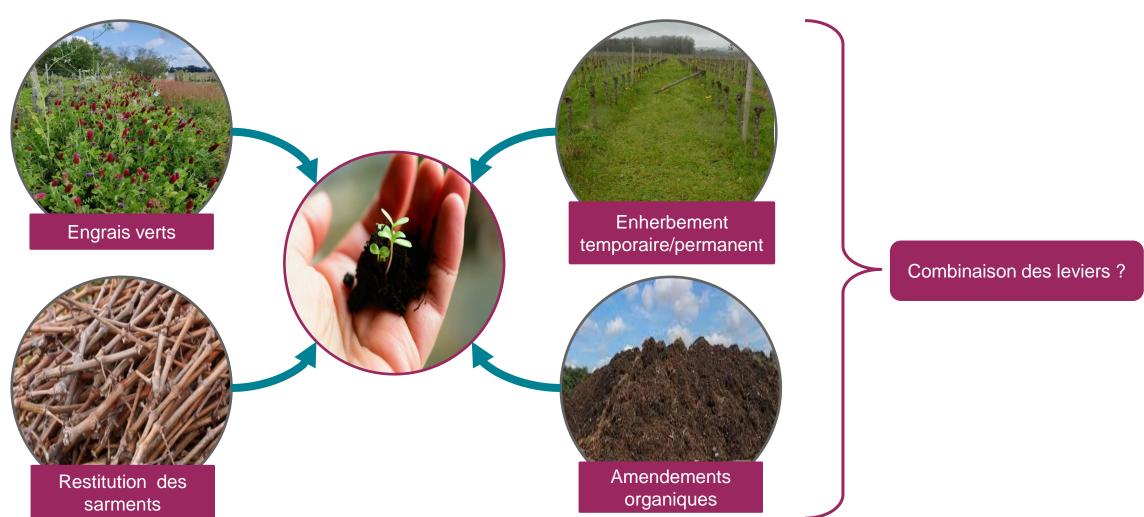
C: veut dire « soleil » en espagnol

D: contient plus d'organismes vivants dans 1 cuillère que d'humains

Importance de limiter la dégradation des sols

Sols agricoles = milieu vivant, fragile et menacé

- ➤ Dégradation naturelle (climat, érosion, acidification via activité biologique...)
- > Amplification par des pratiques culturales intensives et non adaptées
 - → Tassement
 - → Pertes de matières organiques
 - → Disponibilité des ressources en eau et nutriments limitée



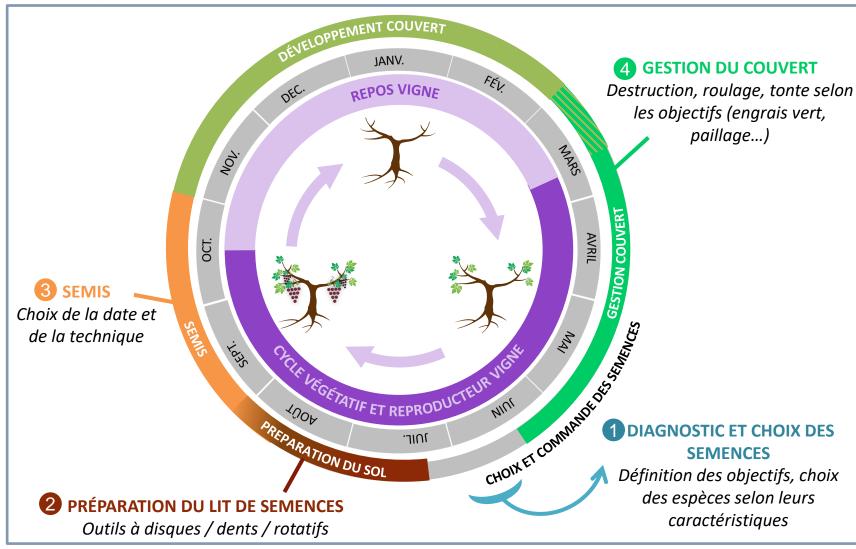
Les sols fournissent de nombreux services

Pratiques de gestion durable des sols

Types de couverts végétaux et bénéfices associés

Enherbement naturel

Engrais verts

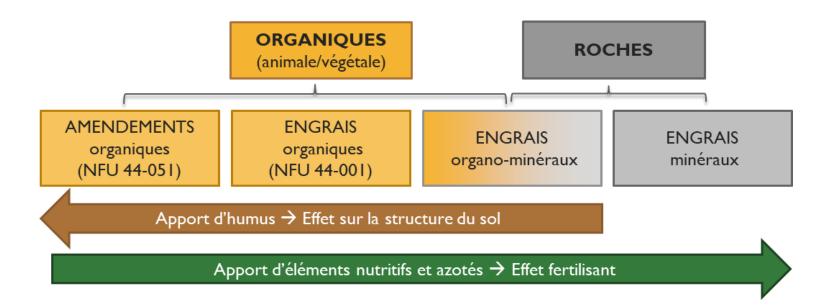

- ✓ Protection et structuration des sols
- ✓ Apport de biomasse, stockage de carbone
 - ✓ Vie des sols, activité biologique

- ✓ Apport / Restitution de nutriments
- ✓ Maîtrise de la concurrence dans le temps et dans l'espace

Pilotage des couverts végétaux semés

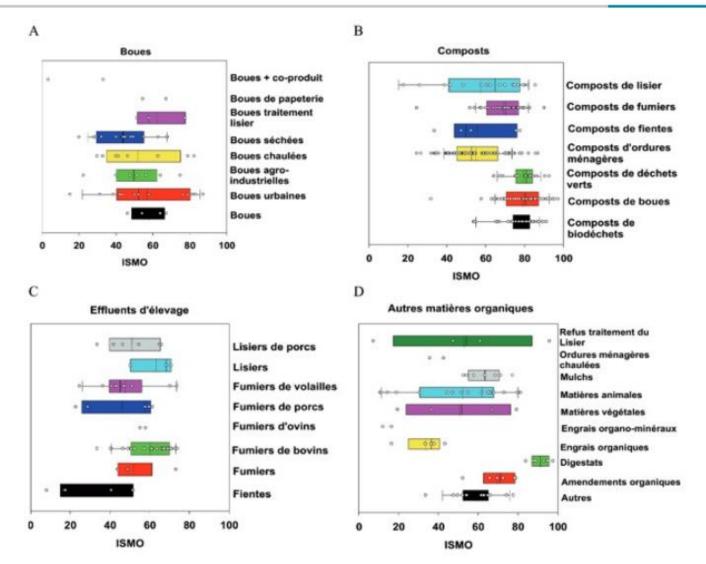
Accès à la ressource hydrique ?

→ Adapter son itinéraire technique pour maîtriser la concurrence induite


Restitutions rapides

Maintien d'un paillage

Apport d'amendements organiques


- Apport exogène pour entretenir ou corriger la fertilité du sol
- Différence entre amendement et engrais :
 - Engrais → nourrir la plante
 - Amendement → structurer le sol

Types d'amendements organiques

- Plusieurs types de produits :
 - Origine animale : fumiers, lisiers et fientes compostés (sans litière), etc.
 - Origine végétale : composts, résidus végétaux, biochar, etc.
- Vitesse de minéralisation et biodisponibilité variable dans le temps

Premiers résultats: Essai du Biochar en Gironde (2023-2026)

Retours sur une première année d'essai en 2023

Qu'est-ce que le Biochar?

Abréviation de « bio-charcoal »

- Matière organique d'origine végétale pyrolysée
- Amendement organique

Utilité:

- Rétention en eau et en éléments minéraux
- Amélioration de la structure du sol
- Stockage de C
- Stimulation de l'activité biologique
- Effet chaulant

Le dispositif expérimental mis en place

- Domaine de Couhins (Villenave-d'Ornon – INRAE)
- 2 modalités 3 répétitions
- Biochar enfoui à 20 cm sous le rang à 400 kg/ha le 24 mai 2023

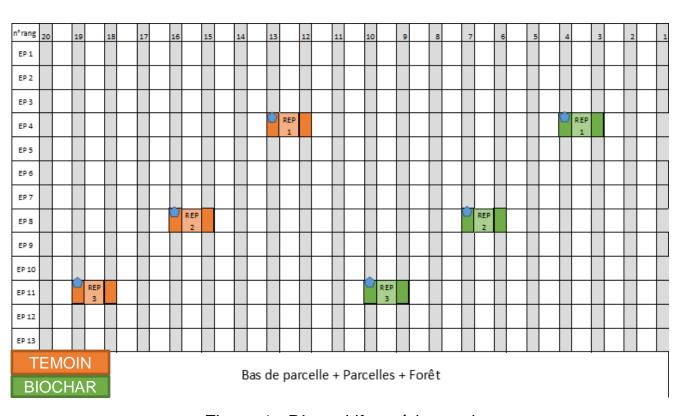


Figure 1 : Dispositif expérimental

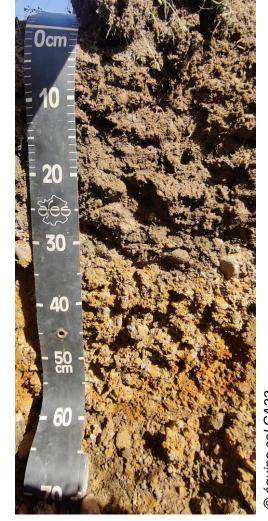
Paramètres suivis

Tableau 1 : Paramètres suivis dans le temps

	Paramètres suivis	Fréquence/ Répétitions	Période
	Fosse pédologiqueAnalyse de la granulométrie	1 fois (2023)	Printemps
SOL	 Analyse de sol avec microorganismes (Diamant) 	2 fois/répétitions (2023 et 2026)	Printemps
	 Suivi tensiomètre / Météo 	Annuelle de 2023 à 2026	Juin à fin septembre
	 Analyse pétioles (VAWB) 	Annuelle de 2023 à 2026	Véraison
VIGNE	Rendement	Annuelle de 2023 à 2026	Vendanges
	 Vigueur (poids des bois de taille) 	Annuelle de 2023 à 2026	Hiver
	 Analyse CASV : maturité technologique et phénolique Azote assimilable 	Annuelle de 2023 à 2026	Vendanges
	Delta C13 (comportement hydrique)	Annuelle de 2023 à 2026	Vendanges

Sondes tensiométriques

© équip



Caractéristiques du sol et paramètres étudiés

Tableau 2 : Principales caractéristiques du sol

Modalité	Argiles (%)	Limons (%)	Sables (%)	MO (%)	pH eau	CEC (meq/100g)	Reliquats N (mg/kg)
BIOCHAR	2,9	14,1	83,0	2,0	7,2	4,3	7,33
TEMOIN	6,5	17,3	76,2	1,8	7,4	4,3	4,30
p-value	ns	ns	ns	ns	ns	ns	0,036

- > Type de sol : Sablo-graveleux peu profond, drainant
- > Pas de différence majeure sur le type de sol entre les deux modalités (hors reliquats azotés)

U33

Profil cultural du 05/04/2023

Bilan climatique de la campagne 2023 au regard des normales

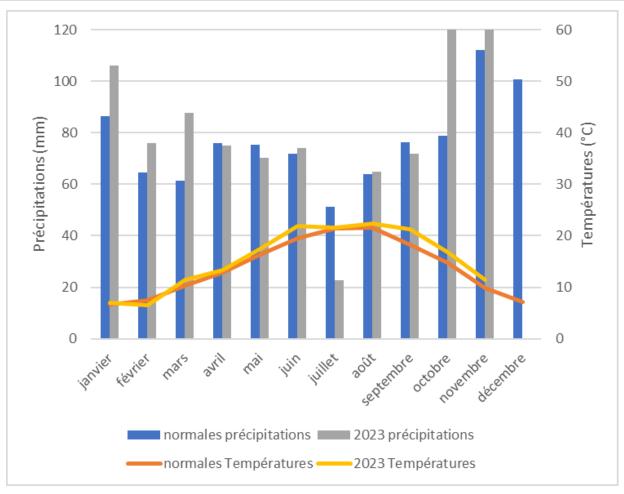


Figure 2 : Diagramme ombrothermique du millésime 2023 et des normales de température (1991-2020)

TEM 1 /

TEM 2 /

Résultats obtenus sur le suivi tensiométrique

Tableau 3 : Suivi estival de la tensiométrie (en KPa)

Mois		JL	JIN				JUILLET				AO	ÛT		SE	EPTEMBI	RE
Semaine	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38
Biochar	58	63	34	40	60	86	127	169	168	209	102	158	205	257	283	245
Témoin	65	82	53	67	117	193	255	312	319	351	170	219	267	325	324	265
p-value	ns	ns	ns	0,046	0,019	0,008	0,007	0,007	0,007	0,003	0,007	ns	ns	0,046	ns	ns

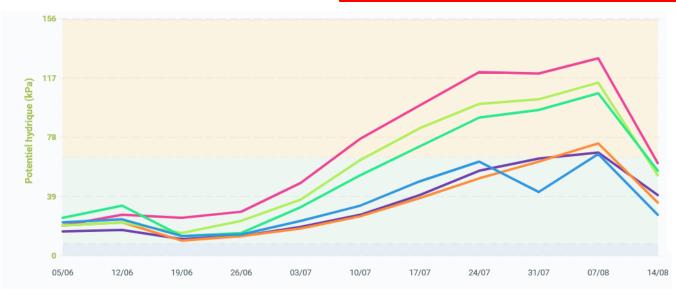
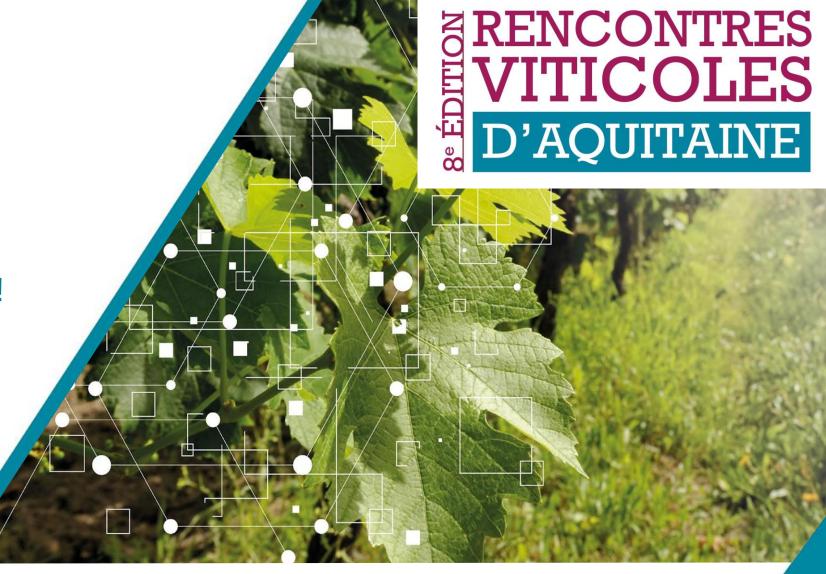


Tableau 4 : Résultats obtenus sur la mesure du Delta 13C

Modalité	Delta 13C (‰)	Référence	p-value			
BIOCHAR	-26,0	Absence de stress	Significativité : < 0,05			
TEM	-24,6	Léger stress	Biochar < TEM			

Figure 3 : Relevé du potentiel hydrique des 6 sondes (KPa)

BIOCHAR 1 / BIOCHAR 2 /


Premières conclusions et pistes de réflexion

Conclusions:

- Le Biochar semble être pertinent sur sa capacité de rétention en eau dans un contexte limitant
- Le suivi doit être poursuivi pour : appréhender les autres bénéfices visés (nutrition, chaulage, etc.)
 - valider les observations de l'année 2023 sur le suivi hydrique

Pistes de réflexions :

- ➤ Il sera important de pouvoir observer et mesurer son comportement dans le sol dans la durée
- > Des suivis complémentaires seraient également pertinents : méthode des apex, potentiel de tige, ...
- ➤ Il serait maintenant intéressant de combiner cette pratique à d'autres déjà étudiées (ex : engrais verts)

Merci de votre attention!

nous contacter:

v.aurelle@gironde.chambagri.fr m.jardel@gironde.chambagri.fr

